1st Week Python
1. Installation of Python
2. Installation of Anaconda, IDLE and Jupyter notebook
3. History and Introduction of Python
4. Application of Python
5. Why we choose Python for Data Science and AI?
6. Types of values
7. Print (), type (), len() methods,
8. String operations
9. Input and output
10. Using str in input
11. Type of input i.e int, float
12. Use of eval function
13. Data structures in Python
14. List operations, methods
15. List comprehensions
16. Tuple methods like index, count
17. Differentiation between list and tuple
2nd Week Python
1. Set
2. Dictionary
3. Del statement
4. Control statements
5. If, if_else
6. Elif
7. Range function
8. Loops in Python
9. For loop
10. While loop
11. Infinte loop
12. Functions
13. Types of functions
14. In-build and User defined
15. What are functions?
16. Arguments
17. Types of arguments
18. Argument and keyword argument
19. Default argument
20. Return statement
21. Lambda expression
22. Filter function
23. Map function
3rd Week Advance Python
1. Advanced Python (Libraries)
2. NumPy
3. Pandas
4. EDA using Pandas
5. Matplotlib
6. Seaborn
7. Plots using Matplotlib and Seaborn
· File Handling
· Error Handling
· What are errors and exceptions?
· Classes and objects
· How to create an object of a class?
· Inheritance
· Multiple inheritance
· Polymorphism
· Encapsulation
· Access modifiers - Public, private and protected
· Iterators and generators
4th Week Machine Learning
1. Introduction of Machine learning
2. Real life application of ML
3. Features of ML
4. Types of ML
5. Supervised learning
6. Unsupervised Learning
7. Reinforcement learning
8. Machine learning algorithms
5th Week Artificial Intelligence
1. Introduction of AI and Deep learning
2. Application of AI and DL
3. Neural network and it's components
4. CNN
5. RNN
6. Tensorflow
7. Introduction to NLP